数据合成方案:知识图谱增强RAG用于难度可控问题生成思路及实现流程

今天继续探讨知识图谱在数据合成上的应用,介绍了一种利用知识图谱结合RAG进行问题生成的方法,《KAQG: A Knowledge-Graph-Enhanced RAG for Difficulty-Controlled Question Generation》(https://arxiv.org/pdf/2505.07618)。论文通过定义多个维度的难度指标来量化难度,使用PageRank算法筛选知识点,并结合大模型生成具体题目。

关于人工智能应用场景中前期数据处理的业务场景和技术分析——包括结构化数据和非结构化数据

文档处理在人工智能领域中至关重要,涉及复杂的业务场景和技术实现。文章讨论了不同类型文档的处理方法及其技术方案,指出非结构化数据是最具挑战性的类型之一,需要采用多模态模型和特定技术来简化处理过程。

AI 文生数据:真正实现“自动生成+自动整理+自动保存”的闭环

文章介绍了一种新的方法——用AI自动生成高质量问答数据集的方法,通过这种流程,用户可以在几分钟内生成、整理并保存结构化的训练数据集。这种方法能显著提高效率,并节省大量时间成本。