什么是序列到序列(Seq2Seq)模型?以及为什么图像理解领域主要使用的是CNN网络而不是Transformer网络?
大模型的核心在于特征提取和重建。Transformer架构在NLP领域表现突出,而CNN则适用于图像处理。序列到序列(Seq2Seq)用于具有连续性内容的生成,如机器翻译、语音识别及视频处理等领域。CNN擅长处理不连续且独立的图像数据。
大模型的核心在于特征提取和重建。Transformer架构在NLP领域表现突出,而CNN则适用于图像处理。序列到序列(Seq2Seq)用于具有连续性内容的生成,如机器翻译、语音识别及视频处理等领域。CNN擅长处理不连续且独立的图像数据。
Transformer的编码器负责将人类可识别的数据转换为大模型可以处理的形式,并进行特征提取;解码器则用于重建模式,生成新的数据。其架构包括自注意力机制等多重数据处理步骤。
最近研究RAG后思考了嵌入与向量在大模型中的作用;嵌入解决数据向量化问题,向量则描述数据间关系;前者本质上是映射到高维矩阵中以捕捉语义关系,而后者则是数学概念中表示有方向和大小的量。
如何优化向量数据库的召回准确率是关键问题之一,主要从提高向量质量、改进索引结构、优化距离度量、改进查询策略、数据增强与处理、通过反馈机制优化以及多模态融合等方面着手解决。
向量数据库通过向量化和相似度计算实现高效的数据检索。它主要应用于人工智能领域,并在推荐系统、图像识别等方面发挥作用。相比传统数据库,向量数据库擅长处理非结构化数据的语义相关性,其核心在于对不同模态数据进行向量化处理以及利用相似度计算算法来优化搜索性能和结果准确性。
RAG系统中检索环节存在问题包括数据质量问题、向量化表示、检索方法与算法等多方面因素,文章提出优化建议以提升其性能,如使用高质量嵌入模型、定期更新数据库及调整相似度度量参数等。