Vision-R1:多模态领域的DeepSeek R1-Zero,7B参数比肩OpenAI O1

Vision-R1项目通过两阶段策略解决了多模态推理数据稀缺的问题,提出冷启动初始化和RL训练方案,并创新性地引入PTST策略和HFRRF奖励函数,显著提升了模型在多个数学推理基准测试中的表现。

何恺明带队驯服AI更懂物理!去噪方法+哈密顿网络,清华校友一作

何恺明团队提出一种结合哈密顿神经网络的去噪方法,旨在让AI更懂物理。该方法采用Block-wise哈密顿量和掩码建模策略来改进传统HNN,并通过实验展示了其在正向模拟、表征学习和轨迹插值任务中的优势。