项目简介
欢迎! kg-gen 帮助您从任何纯文本中提取知识图谱,使用 AI。它可以处理小型和大型文本输入,还可以处理对话格式的消息。
为什么生成知识图谱? kg-gen 如果你想:
-
创建一个图来辅助 RAG(检索增强生成) -
创建用于模型训练和测试的图合成数据 -
将任何文本结构化为图 -
分析源文本中概念之间的关系
我们通过 LiteLLM 支持基于 API 和本地模型提供商,包括 OpenAI、Ollama、Anthropic、Gemini、Deepseek 等,还使用 DSPy 进行结构化输出生成。
尝试通过运行
tests/ 中的脚本来试用。运行我们的 KG 基准测试 MINE 的说明在
MINE/ 。阅读论文:KGGen:使用语言模型从纯文本中提取知识图谱Quick
快速开始
安装模块:
pip install kg-gen
然后导入并使用 kg-gen 。您可以以两种格式之一提供您的文本输入:
消息对象列表(每个对象具有角色和内容)
以下是一些示例片段:
from kg_gen import KGGen# Initialize KGGen with optional configurationkg = KGGen(model="openai/gpt-4o", # Default modeltemperature=0.0, # Default temperatureapi_key="YOUR_API_KEY" # Optional if set in environment)# EXAMPLE 1: Single string with contexttext_input = "Linda is Josh's mother. Ben is Josh's brother. Andrew is Josh's father."graph_1 = kg.generate(input_data=text_input,context="Family relationships")# Output:# entities={'Linda', 'Ben', 'Andrew', 'Josh'}# edges={'is brother of', 'is father of', 'is mother of'}# relations={('Ben', 'is brother of', 'Josh'),# ('Andrew', 'is father of', 'Josh'),# ('Linda', 'is mother of', 'Josh')}# EXAMPLE 2: Large text with chunking and clusteringwith open('large_text.txt', 'r') as f:large_text = f.read()# Example input text:# """# Neural networks are a type of machine learning model. Deep learning is a subset of machine learning# that uses multiple layers of neural networks. Supervised learning requires training data to learn# patterns. Machine learning is a type of AI technology that enables computers to learn from data.# AI, also known as artificial intelligence, is related to the broader field of artificial intelligence.# Neural nets (NN) are commonly used in ML applications. Machine learning (ML) has revolutionized# many fields of study.# ...# """graph_2 = kg.generate(input_data=large_text,chunk_size=5000, # Process text in chunks of 5000 charscluster=True # Cluster similar entities and relations)# Output:# entities={'neural networks', 'deep learning', 'machine learning', 'AI', 'artificial intelligence',# 'supervised learning', 'unsupervised learning', 'training data', ...}# edges={'is type of', 'requires', 'is subset of', 'uses', 'is related to', ...}# relations={('neural networks', 'is type of', 'machine learning'),# ('deep learning', 'is subset of', 'machine learning'),# ('supervised learning', 'requires', 'training data'),# ('machine learning', 'is type of', 'AI'),# ('AI', 'is related to', 'artificial intelligence'), ...}# entity_clusters={# 'artificial intelligence': {'AI', 'artificial intelligence'},# 'machine learning': {'machine learning', 'ML'},# 'neural networks': {'neural networks', 'neural nets', 'NN'}# ...# }# edge_clusters={# 'is type of': {'is type of', 'is a type of', 'is a kind of'},# 'is related to': {'is related to', 'is connected to', 'is associated with'# ...}# }# EXAMPLE 3: Messages arraymessages = [{"role": "user", "content": "What is the capital of France?"},{"role": "assistant", "content": "The capital of France is Paris."}]graph_3 = kg.generate(input_data=messages)# Output:# entities={'Paris', 'France'}# edges={'has capital'}# relations={('France', 'has capital', 'Paris')}# EXAMPLE 4: Combining multiple graphstext1 = "Linda is Joe's mother. Ben is Joe's brother."# Input text 2: also goes by Joe."text2 = "Andrew is Joseph's father. Judy is Andrew's sister. Joseph also goes by Joe."graph4_a = kg.generate(input_data=text1)graph4_b = kg.generate(input_data=text2)# Combine the graphscombined_graph = kg.aggregate([graph4_a, graph4_b])# Optionally cluster the combined graphclustered_graph = kg.cluster(combined_graph,context="Family relationships")# Output:# entities={'Linda', 'Ben', 'Andrew', 'Joe', 'Joseph', 'Judy'}# edges={'is mother of', 'is father of', 'is brother of', 'is sister of'}# relations={('Linda', 'is mother of', 'Joe'),# ('Ben', 'is brother of', 'Joe'),# ('Andrew', 'is father of', 'Joe'),# ('Judy', 'is sister of', 'Andrew')}# entity_clusters={# 'Joe': {'Joe', 'Joseph'},# ...# }# edge_clusters={ ... }
功能
大文本分块
对于长文本,您可以指定一个 chunk_size 参数以将文本分块处理:
graph = kg.generate(input_data=large_text,chunk_size=5000 # Process in chunks of 5000 characters)
聚类相似实体和关系
您可以聚类相似实体和关系,无论是在生成过程中还是之后:
# During generationgraph = kg.generate(input_data=text,cluster=True,context="Optional context to guide clustering")# Or after generationclustered_graph = kg.cluster(graph,context="Optional context to guide clustering")
聚合多个图
您可以使用聚合方法组合多个图表:
graph1 = kg.generate(input_data=text1)graph2 = kg.generate(input_data=text2)combined_graph = kg.aggregate([graph1, graph2])
消息数组处理
处理消息数组时,kg-gen:
-
保留每条消息的角色信息 -
维护消息顺序和边界 -
能提取实体和关系: -
消息中提到的概念之间 -
演讲者(角色)与概念之间 -
在对话中的多条消息
例如,给定这个对话:
messages = [{"role": "user", "content": "What is the capital of France?"},{"role": "assistant", "content": "The capital of France is Paris."}]
生成的图形可能包括以下实体:
-
“France” -
“Paris”
并且关系如下:
API 参考
KGGen 类
构造函数参数
model : str = “openai/gpt-4o” – 使用的生成模型
-
temperature : 浮点数 = 0.0 – 模型采样的温度 -
api_key : Optional[str] = None – 模型访问的 API 密钥
生成()方法参数
-
model : Optional[str] – 覆盖默认模型 -
api_key : Optional[str] – 覆盖默认 API 密钥 -
context : str = “” – 数据上下文描述 -
chunk_size : 可选[int] – 处理文本块的大小 cluster: 布尔型 = False - 是否在生成后对图进行聚类 -
temperature : Optional[float] – 覆盖默认温度 output_folder:可选的路径以保存部分进度
cluster() 方法参数
graph 聚类图
-
context : str = “” – 数据上下文描述
-
model : Optional[str] – 覆盖默认模型
-
temperature : Optional[float] – 覆盖默认温度
-
api_key : Optional[str] – 覆盖默认 API 密钥
graph 聚类图
aggregate() 方法参数
graphs : 图列表 – 要组合的图列表项目链接
http://github.com/stair-lab/kg-gen
扫码加入技术交流群,备注「开发语言-城市-昵称」
(文:GitHubStore)