首先,我要给大家跪一个
在上一篇里面:务实测试:DeepSeek 各家 API 真实速度(附:测试脚本)
之前我的 token 计算方法错误,导致数据有 10% 的偏差(排序不变)

在这里感谢「茫然四顾」的问题指出

下方为准确的速度测试
DeepSeek 官方 + 阿里/百度/火山/腾讯云 + 硅基流动
(新增了百度和硅基普通版)
中国时间:2025-02-14 17:35:55

测试代码&log
https://colab.research.google.com/drive/1cUqspnOrft2Qp9Oq4sGfDzlsJN_WCogl
代码我放在了最后,可以自己跑
测试包含以下步骤:
-
通过 API 向模型服务器发送请求,记录当前时间为 t0
-
当模型返回第一个字符时,记录为 t1,此刻开始推理
-
当模型推理结束、开始生成内容时,记录为 t2
-
当生成结束时,记录为 t3
-
当 stream_options={“include_usage”: True} 的时候,模型会记录并输出以下信息类似这样的信息:
CompletionUsage(completion_tokens=513, prompt_tokens=19, total_tokens=532, completion_tokens_details=CompletionTokensDetails(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=377, rejected_prediction_tokens=None), prompt_tokens_details=PromptTokensDetails(audio_tokens=None, cached_tokens=0), prompt_cache_hit_tokens=0, prompt_cache_miss_tokens=19)
-
推理阶段所使用的 token,记做:T推,就是 reasoning_tokens
-
生成阶段所使用的 token,记做:T生,就是 completion_tokens-reasoning_tokens
-
另:并非所有的接口,都返回了 CompletionTokensDetails 字段,比如硅基流动、腾讯云、阿里云就只返回了 completion_tokens,prompt_tokens 和 total_tokens。因此,对于这几个模型,只能统计平均速度。
-
因此,可知:
-
模型的首响应时间:t1 – t0
-
模型的推理速度:T推/(t2-t1)
-
模型的生成速度:T生/(t3-t2)
-
模型的平均速度:(T推+T生)/(t3-t0)
在这里,我用的 Prompt 也非常简单(对于推理模型来说,太长的 prompt 也没意义)
#测试 prompt:给我写一首七言绝句,赞叹祖国的大好河山
测试代码如下
import timefrom openai import OpenAIfrom google.colab import userdataimport datetimeimport pytzdef test_provider(provider_config, messages):"""根据传入的 provider 配置及消息,测试生成过程,并统计各阶段指标。如果测试过程中出现任何错误,则打印错误信息并跳过当前服务商。"""provider_name = provider_config.get("name", "Unnamed Provider")print(f"\n---------------------------")print(f"开始测试服务商:{provider_name}")print(f"---------------------------\n")try:api_key = provider_config.get("api_key")base_url = provider_config.get("base_url")model = provider_config.get("model")# 初始化客户端(请确保你使用的 OpenAI 客户端支持这些参数)client = OpenAI(api_key=api_key, base_url=base_url)# 初始化 token 计数器与文本变量prompt_tokens = 0completion_tokens = 0reasoning_tokens = 0content_tokens = 0total_tokens = 0reasoning_text = ""content_text = ""# 初始化计时变量start_time = time.time()first_token_time = None# 用于记录 reasoning 与 content 部分开始与结束的时刻reasoning_start_time = Nonereasoning_end_time = Nonecontent_start_time = Nonecontent_end_time = None# 吐槽:各家 usage_content 的更新方式不同,有的是过程中更新,有的是最后展示usage_content = ""# 发起流式请求response = client.chat.completions.create(model=model,messages=messages,stream=True,stream_options={"include_usage": True},)# 遍历每个流式响应块for chunk in response:# 若 chunk 中没有 choices 信息,则检查是否有 usage 信息打印后继续if chunk.usage:usage_content = chunk.usage# 如果 completion_tokens_details 为 None,则说明没有单独的推理信息,此时设置 reasoning_tokens 为 0if chunk.usage.completion_tokens_details is None:reasoning_tokens = 0else:reasoning_tokens = chunk.usage.completion_tokens_details.reasoning_tokensprompt_tokens = chunk.usage.prompt_tokenscompletion_tokens = chunk.usage.completion_tokenscontent_tokens = completion_tokens - reasoning_tokenstotal_tokens = chunk.usage.total_tokens# 获取第一个 choice 的 deltaif not chunk.choices:continuedelta = chunk.choices[0].delta# 尝试获取 reasoning 与 content 片段(可能为空字符串)reasoning_piece = getattr(delta, 'reasoning_content', "")content_piece = getattr(delta, 'content', "")# 记录首个 token 到达时间(仅记录一次)if first_token_time is None and (reasoning_piece or content_piece):first_token_time = time.time() - start_time# 如果有 reasoning 内容if reasoning_piece:if reasoning_start_time is None:reasoning_start_time = time.time()reasoning_text += reasoning_piecereasoning_end_time = time.time() # 每次更新,最终记录最后一次收到的时刻print(reasoning_piece, end='', flush=True)# 如果有 content 内容elif content_piece:if content_start_time is None:content_start_time = time.time()content_text += content_piececontent_end_time = time.time() # 每次更新print(content_piece, end='', flush=True)total_time = time.time() - start_timereasoning_time = (reasoning_end_time - reasoning_start_time) if (reasoning_start_time and reasoning_end_time) else 0content_time = (content_end_time - content_start_time) if (content_start_time and content_end_time) else 0if(usage_content):print("\n\n【Usage 信息】")print(usage_content)# 输出测试指标,格式参考如下print("\n\n【%s】" % provider_name)if first_token_time is not None:print(f"首 token 响应时间:{first_token_time:.2f} 秒")else:print("未收到 token 响应。")if reasoning_tokens > 0:print(f"Reasoning 部分:{len(reasoning_text)} 字符,{reasoning_tokens} tokens, 用时:{reasoning_time:.2f} 秒, 生成速度:{reasoning_tokens / reasoning_time if reasoning_time > 0 else 0:.2f} tokens/s")print(f"Content 部分:{len(content_text)} 字符,{content_tokens} tokens, 用时:{content_time:.2f} 秒, 生成速度:{content_tokens / content_time if content_time > 0 else 0:.2f} tokens/s")# 总体生成始终打印print(f"内容生成:{len(reasoning_text + content_text)} 字符,{completion_tokens} tokens, 总用时:{total_time:.2f} 秒, 生成速度:{completion_tokens / total_time if total_time > 0 else 0:.2f} tokens/s")print("\n***************************\n")return {"provider": provider_name,"first_token_time": first_token_time,"reasoning_tokens": reasoning_tokens,"reasoning_time": reasoning_time,"content_tokens": content_tokens,"content_time": content_time,"total_tokens": total_tokens,"total_time": total_time,}except Exception as e:# 如果出现任何错误,则打印错误信息并跳过该服务商print(f"服务商 {provider_name} 测试过程中发生错误:{e}")print("\n---------------------------\n")return Noneif __name__ == "__main__":# 待测试的对话消息(此处为示例:写一首七言绝句赞美祖国大好河山)messages = [{'role': 'user','content': "给我写一首七言绝句,赞叹祖国的大好河山"}]# 定义各服务商的配置providers = [{"name": "DeepSeek 官方", # 这个经常不可用"api_key": userdata.get('Key_DeepSeek'), # 请替换为真实 API Key:https://platform.deepseek.com/api_keys"base_url": "https://api.deepseek.com","model": "deepseek-reasoner"},{"name": "阿里云/百炼","api_key": userdata.get('Key_Aliyun'), # 请替换为真实 API Key:https://bailian.console.aliyun.com/?apiKey=1#/api-key"base_url": "https://dashscope.aliyuncs.com/compatible-mode/v1","model": "deepseek-r1"},{"name": "百度千帆","api_key": userdata.get('Key_Qianfan'), # 请替换为真实 API Key:https://console.bce.baidu.com/iam/#/iam/apikey/list"base_url": "https://qianfan.baidubce.com/v2","model": "deepseek-r1"},{"name": "硅基流动","api_key": userdata.get('Key_Siliconflow'), # 请替换为真实 API Key:https://cloud.siliconflow.cn/account/ak"base_url": "https://api.siliconflow.cn/v1","model": "deepseek-ai/DeepSeek-R1"},{"name": "硅基流动Pro","api_key": userdata.get('Key_Siliconflow'), # 请替换为真实 API Key:https://cloud.siliconflow.cn/account/ak"base_url": "https://api.siliconflow.cn/v1","model": "Pro/deepseek-ai/DeepSeek-R1"},{"name": "火山引擎","api_key": userdata.get('Key_Volces'), # 请替换为真实 API Key:https://console.volcengine.com/ark/region:ark+cn-beijing/apiKey?apikey=%7B%7D"base_url": "https://ark.cn-beijing.volces.com/api/v3","model": userdata.get('Endpoint_Volces_R1') # 火山引擎这里叫接入点,在这里创建:https://console.volcengine.com/ark/region:ark+cn-beijing/endpoint?config=%7B%7D},{"name": "腾讯云","api_key": userdata.get('Key_Tencentcloud'), # 请替换为真实 API Key:https://console.cloud.tencent.com/lkeap"base_url": "https://api.lkeap.cloud.tencent.com/v1","model": "deepseek-r1"},]print(f"本次测试开始于中国时间:{datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime('%Y-%m-%d %H:%M:%S')}")# 循环对每个服务商进行测试for provider in providers:test_provider(provider, messages)
-
有的是在末位 token 一并给出 usage 信息(比如官方),有的则是在过程中不断更新(比如硅基流动) -
有的会分别给出推理、生成所用的 token 数量(比如官方),有的则只给出总和的 token(比如腾讯云) -
等等…
(文:赛博禅心)
