R1-Zero的无监督版本来了!SFT不再是必须,EMPO重新定义大模型推理微调
本文提出Entropy Minimized Policy Optimization (EMPO)方法,旨在实现完全无监督条件下大模型推理能力的提升。该方法不需要监督微调或人工标注的答案,仅通过强化学习训练从基模型中获得策略,并利用语义相似性聚类生成的多个回答作为奖励信号,从而在数学及其他通用推理任务上取得显著性能提升。
本文提出Entropy Minimized Policy Optimization (EMPO)方法,旨在实现完全无监督条件下大模型推理能力的提升。该方法不需要监督微调或人工标注的答案,仅通过强化学习训练从基模型中获得策略,并利用语义相似性聚类生成的多个回答作为奖励信号,从而在数学及其他通用推理任务上取得显著性能提升。